A Numerical Study on Micromechanical Aspects in Short Fiber Composites
نویسندگان
چکیده
This study focused on the contribution of micromechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model. Keywords—Effective properties, representative volume element, short fiber reinforced composites.
منابع مشابه
Stiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کاملA Micromechanical Constitutive Model of Progressive Crushing in Random Carbon Fiber Polymer Matrix Composites
A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs). To estimate the overall elastoplastic damage responses, an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroid...
متن کاملModeling of progressive damage in aligned and randomly oriented discontinuous fiber polymer matrix composites
Damage constitutive models based on micromechanical formulation and a combination of micromechanical and macromechanical damage criterions are presented to predict progressive damage in aligned and random fiber-reinforced composites. Progressive interfacial fiber debonding models are considered in accordance with a statistical function to describe the varying probability of fiber debonding. Bas...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملStiffness Prediction in Green Composites Using Homogenization Techniques
1 Abstract Bio-based materials offer interesting solutions to sustainable and eco-friendly industrial applications in the future. In this study micromechanical modeling and Mori-Tanaka mean field homogenization technique is used for stiffness prediction in short flax fiber reinforced PLA biopolymer. The fiber geometry distribution is considered in the homogenization along with the orientation d...
متن کامل